1. Handling Missing Values
Missing Value 처리하기
Drop missing values, or fill them in with an automated workflow.
# modules we'll use
import pandas as pd
import numpy as np
# read in all our data
nfl_data = pd.read_csv("../input/nflplaybyplay2009to2016/NFL Play by Play 2009-2017 (v4).csv")
# set seed for reproducibility
np.random.seed(0)
# get the number of missing data points per column
missing_values_count = nfl_data.isnull().sum()
# look at the # of missing points in the first ten columns
missing_values_count[0:10]
# how many total missing values do we have?
total_cells = np.product(nfl_data.shape)
total_missing = missing_values_count.sum()
# percent of data that is missing
percent_missing = (total_missing/total_cells) * 100
print(percent_missing)
# "Is this value missing because it wasn't recorded or because it doesn't exist?"
# remove all the rows that contain a missing value
nfl_data.dropna()
# remove all columns with at least one missing value
columns_with_na_dropped = nfl_data.dropna(axis=1)
columns_with_na_dropped.head()
# just how much data did we lose?
print("Columns in original dataset: %d \n" % nfl_data.shape[1])
print("Columns with na's dropped: %d" % columns_with_na_dropped.shape[1])
# get a small subset of the NFL dataset
subset_nfl_data = nfl_data.loc[:, 'EPA':'Season'].head()
subset_nfl_data
# replace all NA's with 0
subset_nfl_data.fillna(0)
# replace all NA's the value that comes directly after it in the same column,
# then replace all the remaining na's with 0
subset_nfl_data.fillna(method='bfill', axis=0).fillna(0)
2. Scaling and Normalization
Transform numeric variables to have helpful properties.
- in scaling, you're changing the range of your data, while
- in normalization, you're changing the shape of the distribution of your data
스케일링 & 정규화
# modules we'll use
import pandas as pd
import numpy as np
# for Box-Cox Transformation
from scipy import stats
# for min_max scaling
from mlxtend.preprocessing import minmax_scaling
# plotting modules
import seaborn as sns
import matplotlib.pyplot as plt
# set seed for reproducibility
np.random.seed(0)
# generate 1000 data points randomly drawn from an exponential distribution
original_data = np.random.exponential(size=1000)
# mix-max scale the data between 0 and 1
scaled_data = minmax_scaling(original_data, columns=[0])
# plot both together to compare
fig, ax = plt.subplots(1,2)
sns.distplot(original_data, ax=ax[0])
ax[0].set_title("Original Data")
sns.distplot(scaled_data, ax=ax[1])
ax[1].set_title("Scaled data")
# normalize the exponential data with boxcox
normalized_data = stats.boxcox(original_data)
# plot both together to compare
fig, ax=plt.subplots(1,2)
sns.distplot(original_data, ax=ax[0])
ax[0].set_title("Original Data")
sns.distplot(normalized_data[0], ax=ax[1])
ax[1].set_title("Normalized data")
3. Parsing Dates
Help Python recognize dates as composed of day, month, and year.
날짜 파싱하기
# modules we'll use
import pandas as pd
import numpy as np
import seaborn as sns
import datetime
# read in our data
landslides = pd.read_csv("../input/landslide-events/catalog.csv")
# set seed for reproducibility
np.random.seed(0)
# create a new column, date_parsed, with the parsed dates
landslides['date_parsed'] = pd.to_datetime(landslides['date'], format="%m/%d/%y")
# get the day of the month from the date_parsed column
day_of_month_landslides = landslides['date_parsed'].dt.day
day_of_month_landslides.head()
# remove na's
day_of_month_landslides = day_of_month_landslides.dropna()
# plot the day of the month
sns.distplot(day_of_month_landslides, kde=False, bins=31)
4. Character Encodings
Avoid UnicoodeDecodeErrors when loading CSV files.
문자 인코딩
# modules we'll use
import pandas as pd
import numpy as np
# helpful character encoding module
import chardet
# set seed for reproducibility
np.random.seed(0)
# start with a string
before = "This is the euro symbol: €"
# check to see what datatype it is
type(before)
## str
# encode it to a different encoding, replacing characters that raise errors
after = before.encode("utf-8", errors="replace")
# check the type
type(after)
## bytes
# take a look at what the bytes look like
after
## b'This is the euro symbol: \xe2\x82\xac'
# convert it back to utf-8
print(after.decode("utf-8"))
## This is the euro symbol: €
# start with a string
before = "This is the euro symbol: €"
# encode it to a different encoding, replacing characters that raise errors
after = before.encode("ascii", errors = "replace")
# convert it back to utf-8
print(after.decode("ascii"))
## This is the euro symbol: ?
# We've lost the original underlying byte string! It's been
# replaced with the underlying byte string for the unknown character :(
# look at the first ten thousand bytes to guess the character encoding
with open("../input/kickstarter-projects/ks-projects-201801.csv", 'rb') as rawdata:
result = chardet.detect(rawdata.read(10000))
# check what the character encoding might be
print(result)
## {'encoding': 'Windows-1252', 'confidence': 0.73, 'language': ''}
# read in the file with the encoding detected by chardet
kickstarter_2016 = pd.read_csv("../input/kickstarter-projects/ks-projects-201612.csv", encoding='Windows-1252')
# look at the first few lines
kickstarter_2016.head()
# save our file (will be saved as UTF-8 by default!)
kickstarter_2016.to_csv("ks-projects-201801-utf8.csv")
5. Inconsistent Data Entry
Efficiently fix typos in your data.
텍스트 전처리
# modules we'll use
import pandas as pd
import numpy as np
# helpful modules
import fuzzywuzzy
from fuzzywuzzy import process
import chardet
# read in all our data
professors = pd.read_csv("../input/pakistan-intellectual-capital/pakistan_intellectual_capital.csv")
# set seed for reproducibility
np.random.seed(0)
# get all the unique values in the 'Country' column
countries = professors['Country'].unique()
# sort them alphabetically and then take a closer look
countries.sort()
countries
# convert to lower case
professors['Country'] = professors['Country'].str.lower()
# remove trailing white spaces
professors['Country'] = professors['Country'].str.strip()
# get the top 10 closest matches to "south korea"
matches = fuzzywuzzy.process.extract("south korea", countries, limit=10, scorer=fuzzywuzzy.fuzz.token_sort_ratio)
# take a look at them
matches
## [('south korea', 100),
## ('southkorea', 48),
## ('saudi arabia', 43),
## ('norway', 35),
## ('austria', 33),
## ('ireland', 33),
## ('pakistan', 32),
## ('portugal', 32),
## ('scotland', 32),
## ('australia', 30)]
# function to replace rows in the provided column of the provided dataframe
# that match the provided string above the provided ratio with the provided string
def replace_matches_in_column(df, column, string_to_match, min_ratio = 47):
# get a list of unique strings
strings = df[column].unique()
# get the top 10 closest matches to our input string
matches = fuzzywuzzy.process.extract(string_to_match, strings,
limit=10, scorer=fuzzywuzzy.fuzz.token_sort_ratio)
# only get matches with a ratio > 90
close_matches = [matches[0] for matches in matches if matches[1] >= min_ratio]
# get the rows of all the close matches in our dataframe
rows_with_matches = df[column].isin(close_matches)
# replace all rows with close matches with the input matches
df.loc[rows_with_matches, column] = string_to_match
# let us know the function's done
print("All done!")
# use the function we just wrote to replace close matches to "south korea" with "south korea"
replace_matches_in_column(df=professors, column='Country', string_to_match="south korea")
# get all the unique values in the 'Country' column
countries = professors['Country'].unique()
# sort them alphabetically and then take a closer look
countries.sort()
countries
728x90
'Data Science, ML > Kaggle' 카테고리의 다른 글
SQL with Python (Google BigQuery) (0) | 2021.05.25 |
---|